Bayesian Optimization for Materials Science



de

Éditeur :

Springer


Paru le : 2017-10-04



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
68,56

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science.
Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While research in these directions has been reported in high-profile journals, until now there has been no textbook aimed specifically at materials scientists who wish to incorporate Bayesian optimization into their own research. This book will be accessible to researchers and students in materials science who have a basic background in calculus and linear algebra.
Pages
42 pages
Collection
n.c
Parution
2017-10-04
Marque
Springer
EAN papier
9789811067808
EAN PDF
9789811067815

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
4
Taille du fichier
1669 Ko
Prix
68,56 €
EAN EPUB
9789811067815

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
4
Taille du fichier
1004 Ko
Prix
68,56 €

Suggestions personnalisées