Bayesian Approach to Inverse Problems



de

Éditeur :

Wiley-ISTE


Paru le : 2013-03-01



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
213,06

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data.
Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems.
The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation.
The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.
Pages
392 pages
Collection
n.c
Parution
2013-03-01
Marque
Wiley-ISTE
EAN papier
9781848210325
EAN PDF
9780470393826

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
392
Taille du fichier
9841 Ko
Prix
213,06 €
EAN EPUB
9781118623695

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
392
Taille du fichier
4454 Ko
Prix
213,06 €

Suggestions personnalisées