Data Mining and Machine Learning in Building Energy Analysis

Towards High Performance Computing

de

,

Éditeur :

Wiley-ISTE


Paru le : 2016-01-05



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
163,47

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

The energy consumption of a building has, in recent years, become a determining factor during its design and construction. With carbon footprints being a growing issue, it is important that buildings be optimized for energy conservation and CO2 reduction. This book therefore presents AI models and optimization techniques related to this application.
The authors start with a review of recent models for the prediction of building energy consumption: engineering methods, statistical methods, artificial intelligence methods, ANNs and SVMs in particular. The book then focuses on SVMs, by first applying them to building energy consumption, then presenting the principles and various extensions, and SVR. The authors then move on to RDP, which they use to determine building energy faults through simulation experiments before presenting SVR model reduction methods and the benefits of parallel computing. The book then closes by presenting some of the current research and advancements in the field.
Pages
186 pages
Collection
n.c
Parution
2016-01-05
Marque
Wiley-ISTE
EAN papier
9781848214224
EAN PDF
9781118577486

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
186
Taille du fichier
2488 Ko
Prix
163,47 €
EAN EPUB
9781118577592

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
186
Taille du fichier
3963 Ko
Prix
163,47 €

Suggestions personnalisées