Handbook of Statistical Analysis and Data Mining Applications



de

, ,

Éditeur :

Academic Press


Paru le : 2009-05-14



eBook Téléchargement ebook sans DRM
Lecture en ligne (streaming)
74,85

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
The Handbook of Statistical Analysis and Data Mining Applications is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers (both academic and industrial) through all stages of data analysis, model building and implementation. The Handbook helps one discern the technical and business problem, understand the strengths and weaknesses of modern data mining algorithms, and employ the right statistical methods for practical application. Use this book to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques, and discusses their application to real problems, in ways accessible and beneficial to practitioners across industries - from science and engineering, to medicine, academia and commerce. This handbook brings together, in a single resource, all the information a beginner will need to understand the tools and issues in data mining to build successful data mining solutions. - Written "By Practitioners for Practitioners" - Non-technical explanations build understanding without jargon and equations - Tutorials in numerous fields of study provide step-by-step instruction on how to use supplied tools to build models - Practical advice from successful real-world implementations - Includes extensive case studies, examples, MS PowerPoint slides and datasets - CD-DVD with valuable fully-working 90-day software included: "Complete Data Miner - QC-Miner - Text Miner" bound with book
Pages
864 pages
Collection
n.c
Parution
2009-05-14
Marque
Academic Press
EAN papier
9780123747655
EAN EPUB SANS DRM
9780080912035

Prix
74,85 €

Bob Nisbet, PhD, is a Data Scientist, currently modeling precancerous colon polyp presence with clinical data at the UC-Irvine Medical Center. He has experience in predictive modeling in Telecommunications, Insurance, Credit, Banking. His academic experience includes teaching in Ecology and in Data Science. His industrial experience includes predictive modeling at AT&T, NCR, and FICO. He has worked also in Insurance, Credit, membership organizations (e.g. AAA), Education, and Health Care industries. He retired as an Assistant Vice President of Santa Barbara Bank & Trust in charge of business intelligence reporting and customer relationship management (CRM) modeling.Dr. John Elder heads the United States' leading data mining consulting team, with offices in Charlottesville, Virginia; Washington, D.C.; and Baltimore, Maryland (www.datamininglab.com). Founded in 1995, Elder Research, Inc. focuses on investment, commercial, and security applications of advanced analytics, including text mining, image recognition, process optimization, cross-selling, biometrics, drug efficacy, credit scoring, market sector timing, and fraud detection. John obtained a B.S. and an M.E.E. in electrical engineering from Rice University and a Ph.D. in systems engineering from the University of Virginia, where he's an adjunct professor teaching Optimization or Data Mining. Prior to 16 years at ERI, he spent five years in aerospace defense consulting, four years heading research at an investment management firm, and two years in Rice's Computational & Applied Mathematics Department.

Suggestions personnalisées