Graph Convolutional Neural Networks for Computer Vision



de

Éditeur :

Wiley-Scrivener


Paru le : 2025-12-03



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
198,43

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Revolutionize your machine learning practice with this essential book that provides expert insights into leveraging Graph Convolutional Networks (GCNNs) to overcome the limitations of traditional CNNs.
In the last decade, computer vision has become a major focus for addressing the world’s growing processing needs. Many existing deep learning architectures for computer vision challenges are based on convolutional neural networks (CNNs). Despite their great achievements, CNNs struggle to encode the intrinsic graph patterns in specific learning tasks. In contrast, graph convolutional networks have been used to address several computer vision issues with equivalent or superior results. The use of GCNNs has shown significant achievement in image classifications, video understanding, point clouds, meshes, and other applications in natural language processing. This book focuses on the applications of graph convolutional networks in computer vision. Through expert insights, it explores how researchers are finding ways to perform convolution algorithms on graphs to improve the way we use machine learning.
Pages
304 pages
Collection
n.c
Parution
2025-12-03
Marque
Wiley-Scrivener
EAN papier
9781394356331
EAN PDF
9781394356355

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
304
Taille du fichier
23450 Ko
Prix
198,43 €
EAN EPUB
9781394356348

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
304
Taille du fichier
19968 Ko
Prix
198,43 €

Suggestions personnalisées