Introduction to Infinite-Equilibriums in Dynamical Systems



de

Éditeur :

Springer


Paru le : 2025-06-20



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
171,19

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book examines infinite-equilibriums for the switching bifurcations of two 1-dimensional flows in dynamical systems. Quadratic single-linear-bivariate systems are adopted to discuss infinite-equilibriums in dynamical systems. For such quadratic dynamical systems, there are three types of infinite-equilibriums. The inflection-source and sink infinite-equilibriums are for the switching bifurcations of two parabola flows on the two-directions. The parabola-source and sink infinite-equilibriums are for the switching bifurcations of parabola and inflection flows on the two-directions. The inflection upper and lower-saddle infinite-equilibriums are for the switching bifurcation of two inflection flows in two directions. The inflection flows are for appearing bifurcations of two parabola flows on the same direction. Such switching bifurcations for 1-dimensional flow are based on the infinite-equilibriums, which will help one understand global dynamics in nonlinear dynamical systems. This book introduces infinite-equilibrium concepts and such switching bifurcations to nonlinear dynamics.
Pages
172 pages
Collection
n.c
Parution
2025-06-20
Marque
Springer
EAN papier
9783031890826
EAN PDF
9783031890833

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
17
Taille du fichier
5253 Ko
Prix
171,19 €
EAN EPUB
9783031890833

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
17
Taille du fichier
29850 Ko
Prix
171,19 €

Albert C. J. Luo, Distinguished Research Professor at Southern Illinois University Edwardsville. He is an internationally recognized scientist on nonlinear dynamics, discontinuous dynamical systems, nonlinear physics, and applied mathematics. His main contributions are on developing a local singularity theory for discontinuous dynamical systems, dynamical systems synchronization, generalized harmonic balance method for analytical solutions of periodic motions to chaos, implicit mapping method for semi-analytical solutions of periodic motions to chaos; a nonlinear dynamical theory for the Hilbert 16th problem; nonlinear Hamiltonian chaos.

Suggestions personnalisées