Tensor-Based Dynamical Systems

Theory and Applications

de

Éditeur :

Springer


Paru le : 2024-03-04



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
63,29

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book provides a comprehensive review on tensor algebra, including tensor products, tensor unfolding, tensor eigenvalues, and tensor decompositions. Tensors are multidimensional arrays generalized from vectors and matrices, which can capture higher-order interactions within multiway data. In addition, tensors have wide applications in many domains such as signal processing, machine learning, and data analysis, and the author explores the role of tensors/tensor algebra in tensor-based dynamical systems where system evolutions are captured through various tensor products. The author provides an overview of existing literature on the topic and aims to inspire readers to learn, develop, and apply the framework of tensor-based dynamical systems.



Pages
106 pages
Collection
n.c
Parution
2024-03-04
Marque
Springer
EAN papier
9783031545047
EAN PDF
9783031545054

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
10
Taille du fichier
3727 Ko
Prix
63,29 €
EAN EPUB
9783031545054

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
10
Taille du fichier
9503 Ko
Prix
63,29 €

Can Chen, Ph.D. is an Assistant Professor in the School of Data Science and Society with a second appointment in the Department of Mathematics at the University of North Carolina at Chapel Hill. He received the B.S. degree in Mathematics from the University of California, Irvine in 2016, and the M.S. degree in Electrical and Computer Engineering and the Ph.D. degree in Applied and Interdisciplinary Mathematics from the University of Michigan in 2020 and 2021, respectively. He was a Postdoctoral Research Fellow in the Channing Division of Network Medicine at Brigham and Women's Hospital and Harvard Medical School from 2021 to 2023. His research interests span a diverse range of fields, including control theory, network science, tensor algebra, numerical analysis, data science, machine learning, deep learning, hypergraph learning, data analysis, and computational biology.

Suggestions personnalisées