Machine Learning on Geographical Data Using Python

Introduction into Geodata with Applications and Use Cases

de

Éditeur :

Apress


Paru le : 2022-07-20



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
56,19

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Get up and running with the basics of geographic information systems (GIS), geospatial analysis, and machine learning on spatial data in Python. 
 
This book starts with an introduction to geodata and covers topics such as GIS and common tools, standard formats of geographical data, and an overview of Python tools for geodata. Specifics and difficulties one may encounter when using geographical data are discussed: from coordinate systems and map projections to different geodata formats and types such as points, lines, polygons, and rasters. Analytics operations typically applied to geodata are explained such as clipping, intersecting, buffering, merging, dissolving, and erasing, with implementations in Python. Use cases and examples are included. The book also focuses on applying more advanced machine learning approaches to geographical data and presents interpolation, classification, regression, and clustering via examples and use cases.
 
This book is your go-to resource for machine learning on geodata. It presents the basics of working with spatial data and advanced applications. Examples are presented using code (accessible at  github.com/Apress/machine-learning-geographic-data-python) and facilitate learning by application.




What You Will Learn
Understand the fundamental concepts of working with geodataWork with multiple geographical data types and file formats in PythonCreate maps in PythonApply machine learning on geographical data
 Who This Book Is For



Readers with a basic understanding of machine learning who wish to extend their skill set to analysis of and machine learning on spatial data while remaining in a common data science Python environment
Pages
312 pages
Collection
n.c
Parution
2022-07-20
Marque
Apress
EAN papier
9781484282861
EAN PDF
9781484282878

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
31
Taille du fichier
18330 Ko
Prix
56,19 €
EAN EPUB
9781484282878

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
31
Taille du fichier
19282 Ko
Prix
56,19 €

Suggestions personnalisées