Discrete-Time Adaptive Iterative Learning Control

From Model-Based to Data-Driven

de

, , ,

Éditeur :

Springer


Collection :

Intelligent Control and Learning Systems

Paru le : 2022-03-21



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
126,59

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book belongs to the subject of control and systems theory. The discrete-time adaptive iterative learning control (DAILC) is discussed as a cutting-edge of ILC and can address random initial states, iteration-varying targets, and other non-repetitive uncertainties in practical applications. This book begins with the design and analysis of model-based DAILC methods by referencing the tools used in the discrete-time adaptive control theory. To overcome the extreme difficulties in modeling a complex system, the data-driven DAILC methods are further discussed by building a linear parametric data mapping between two consecutive iterations. Other significant improvements and extensions of the model-based/data-driven DAILC are also studied to facilitate broader applications. The readers can learn the recent progress on DAILC with consideration of various applications. This book is intended for academic scholars, engineers and graduate students who are interested in learning control, adaptive control, nonlinear systems, and related fields.
Pages
206 pages
Collection
Intelligent Control and Learning Systems
Parution
2022-03-21
Marque
Springer
EAN papier
9789811904639
EAN PDF
9789811904646

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
20
Taille du fichier
3758 Ko
Prix
126,59 €
EAN EPUB
9789811904646

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
20
Taille du fichier
31212 Ko
Prix
126,59 €