Practical Explainable AI Using Python

Artificial Intelligence Model Explanations Using Python-based Libraries, Extensions, and Frameworks

de

Éditeur :

Apress


Paru le : 2021-12-14



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
66,05

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers.


You'll begin with an introduction to model explainability and interpretability basics, ethical consideration, and biases in predictions generated by AI models. Next, you'll look at methods and systems to interpret linear, non-linear, and time-series models used in AI. The book will also cover topics ranging from interpreting to understanding how an AI algorithm makes a decision





Further, you will learn the most complex ensemble models, explainability, and interpretability using frameworks such as Lime, SHAP, Skater, ELI5, etc. Moving forward, youwill be introduced to model explainability for unstructured data, classification problems, and natural language processing–related tasks. Additionally, the book looks at counterfactual explanations for AI models. Practical Explainable AI Using Python shines the light on deep learning models, rule-based expert systems, and computer vision tasks using various XAI frameworks.


What You'll Learn

Review the different ways of making an AI model interpretable and explainableExamine the biasness and good ethical practices of AI modelsQuantify, visualize, and estimate reliability of AI modelsDesign frameworks to unbox the black-box modelsAssess the fairness of AI models
Understand the building blocks of trust in AI models
Increase the level of AI adoption


Who This Book Is For


AI engineers, data scientists, and software developers involved in driving AI projects/ AI products.




Pages
344 pages
Collection
n.c
Parution
2021-12-14
Marque
Apress
EAN papier
9781484271575
EAN PDF
9781484271582

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
34
Taille du fichier
16876 Ko
Prix
66,05 €
EAN EPUB
9781484271582

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
34
Taille du fichier
25385 Ko
Prix
66,05 €

Suggestions personnalisées