Adversary-Aware Learning Techniques and Trends in Cybersecurity



de

, ,

Éditeur :

Springer


Paru le : 2021-01-22



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
137,14

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book is intended to give researchers and practitioners in the cross-cutting fields of artificial intelligence, machine learning (AI/ML) and cyber security up-to-date and in-depth knowledge of recent techniques for improving the vulnerabilities of AI/ML systems against attacks from malicious adversaries. The ten chapters in this book, written by eminent researchers in AI/ML and cyber-security, span diverse, yet inter-related topics including game playing AI and game theory as defenses against attacks on AI/ML systems, methods for effectively addressing vulnerabilities of AI/ML operating in large, distributed environments like Internet of Things (IoT) with diverse data modalities, and, techniques to enable AI/ML systems to intelligently interact with humans that could be malicious adversaries and/or benign teammates. Readers of this book will be equipped with definitive information on recent developments suitable for countering adversarial threats in AI/ML systems towards making them operate in a safe, reliable and seamless manner.
Pages
227 pages
Collection
n.c
Parution
2021-01-22
Marque
Springer
EAN papier
9783030556914
EAN PDF
9783030556921

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
22
Taille du fichier
5356 Ko
Prix
137,14 €
EAN EPUB
9783030556921

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
22
Taille du fichier
19282 Ko
Prix
137,14 €

Suggestions personnalisées