Applied Data Science Using PySpark

Learn the End-to-End Predictive Model-Building Cycle

de

, ,

Éditeur :

Apress


Paru le : 2020-12-17



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
56,19

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Discover the capabilities of PySpark and its application in the realm of data science. This comprehensive guide with hand-picked examples of daily use cases will walk you through the end-to-end predictive model-building cycle with the latest techniques and tricks of the trade. 
Applied Data Science Using PySpark is divided unto six sections which walk you through the book. In section 1, you start with the basics of PySpark focusing on data manipulation. We make you comfortable with the language and then build upon it to introduce you to the mathematical functions available off the shelf. In section 2, you will dive into the art of variable selection where we demonstrate various selection techniques available in PySpark. In section 3, we take you on a journey through machine learning algorithms, implementations, and fine-tuning techniques. We will also talk about different validation metrics and how to use them for picking the best models. Sections 4 and 5 go through machine learning pipelines and various methods available to operationalize the model and serve it through Docker/an API. In the final section, you will cover reusable objects for easy experimentation and learn some tricks that can help you optimize your programs and machine learning pipelines. 
By the end of this book, you will have seen the flexibility and advantages of PySpark in data science applications. This book is recommended to those who want to unleash the power of parallel computing by simultaneously working with big datasets.
What You Will Learn
Build an end-to-end predictive modelImplement multiple variable selection techniquesOperationalize modelsMaster multiple algorithms and implementations  

Who This Book is For Data scientists and machine learning and deep learning engineers who want to learn and use PySpark for real-time analysis of streamingdata.
Pages
410 pages
Collection
n.c
Parution
2020-12-17
Marque
Apress
EAN papier
9781484264997
EAN PDF
9781484265000

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
41
Taille du fichier
11203 Ko
Prix
56,19 €
EAN EPUB
9781484265000

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
41
Taille du fichier
14868 Ko
Prix
56,19 €

Suggestions personnalisées