Stochastic Learning and Optimization

A Sensitivity-Based Approach

de

Éditeur :

Springer


Paru le : 2007-10-23



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
210,99

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Performance optimization is vital in the design and operation of modern engineering systems, including communications, manufacturing, robotics, and logistics. Most engineering systems are too complicated to model, or the system parameters cannot be easily identified, so learning techniques have to be applied. This is a multi-disciplinary area which has been attracting wide attention across many disciplines. Areas such as perturbation analysis (PA) in discrete event dynamic systems (DEDSs), Markov decision processes (MDPs) in operations research, reinforcement learning (RL) or neuro-dynamic programming (NDP) in computer science, identification and adaptive control (I&AC) in control systems, share the common goal: to make the "best decision" to optimize system performance. This book provides a unified framework based on a sensitivity point of view. It also introduces new approaches and proposes new research topics within this sensitivity-based framework.
Pages
566 pages
Collection
n.c
Parution
2007-10-23
Marque
Springer
EAN papier
9780387367873
EAN PDF
9780387690827

Informations sur l'ebook
Nombre pages copiables
5
Nombre pages imprimables
56
Taille du fichier
5816 Ko
Prix
210,99 €

Suggestions personnalisées