Big Data Approach to Firm Level Innovation in Manufacturing

Industrial Economics de

,

Éditeur :

Springer


Collection :

SpringerBriefs in Applied Sciences and Technology

Paru le : 2020-08-03

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
63,29

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


This book discusses  utilizing Big Data and Machine Learning approaches in investigating five aspects of firm level innovation in manufacturing; (1) factors that determine the decision to innovate (2) the extent of innovation (3) characteristics of an innovating firm (4) types of innovation undertaken and (5) the factors that drive and enable different types of innovation. A conceptual model and a cost-benefit framework were developed to explain a firm’s decision to innovate. To empirically demonstrate these aspects, Big data and machine learning approaches were introduced in the form of a case study. The result of Big data analysis as an inferior method to analyse innovation data was also compared with the results of conventional statistical methods. The implications of the findings of the study for increasing the pace of innovation are also discussed.


Pages
72 pages
Collection
SpringerBriefs in Applied Sciences and Technology
Parution
2020-08-03
Marque
Springer
EAN papier
9789811562990
EAN PDF
9789811563003

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
1403 Ko
Prix
63,29 €
EAN EPUB
9789811563003

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
1239 Ko
Prix
63,29 €