Analog IC Placement Generation via Neural Networks from Unlabeled Data



de

, , ,

Éditeur :

Springer


Paru le : 2020-06-30



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
In this book, innovative research using artificial neural networks (ANNs) is conducted to automate the placement task in analog integrated circuit layout design, by creating a generalized model that can generate valid layouts at push-button speed. Further, it exploits ANNs’ generalization and push-button speed prediction (once fully trained) capabilities, and details the optimal description of the input/output data relation. The description developed here is chiefly reflected in two of the system’s characteristics: the shape of the input data and the minimized loss function. In order to address the latter, abstract and segmented descriptions of both the input data and the objective behavior are developed, which allow the model to identify, in newer scenarios, sub-blocks which can be found in the input data. This approach yields device-level descriptions of the input topology that, for each device, focus on describing its relation to every other device in the topology. By means of thesedescriptions, an unfamiliar overall topology can be broken down into devices that are subject to the same constraints as a device in one of the training topologies.


In the experimental results chapter, the trained ANNs are used to produce a variety of valid placement solutions even beyond the scope of the training/validation sets, demonstrating the model’s effectiveness in terms of identifying common components between newer topologies and reutilizing the acquired knowledge. Lastly, the methodology used can readily adapt to the given problem’s context (high label production cost), resulting in an efficient, inexpensive and fast model.                           
Pages
87 pages
Collection
n.c
Parution
2020-06-30
Marque
Springer
EAN papier
9783030500603
EAN PDF
9783030500610

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
8
Taille du fichier
5550 Ko
Prix
52,74 €
EAN EPUB
9783030500610

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
8
Taille du fichier
7578 Ko
Prix
52,74 €

Suggestions personnalisées