Challenges and Trends in Multimodal Fall Detection for Healthcare



de

, , ,

Éditeur :

Springer


Paru le : 2020-01-28



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description



This book focuses on novel implementations of sensor technologies, artificial intelligence, machine learning, computer vision and statistics for automated, human fall recognition systems and related topics using data fusion.


It includes theory and coding implementations to help readers quickly grasp the concepts and to highlight the applicability of this technology. For convenience, it is divided into two parts. The first part reviews the state of the art in human fall and activity recognition systems, while the second part describes a public dataset especially curated for multimodal fall detection. It also gathers contributions demonstrating the use of this dataset and showing examples.
 

This book is useful for anyone who is interested in fall detection systems, as well as for those interested in solving challenging, signal recognition, vision and machine learning problems. Potential applications include health care, robotics, sports, human–machine interaction, among others.

Pages
259 pages
Collection
n.c
Parution
2020-01-28
Marque
Springer
EAN papier
9783030387471
EAN PDF
9783030387488

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
25
Taille du fichier
9574 Ko
Prix
94,94 €
EAN EPUB
9783030387488

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
25
Taille du fichier
43827 Ko
Prix
94,94 €

Suggestions personnalisées