Lasso-MPC – Predictive Control with l1-Regularised Least Squares



de

Éditeur :

Springer


Collection :

Springer Theses

Paru le : 2016-03-31



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This thesis proposes a novel Model Predictive Control (MPC) strategy, which modifies the usual MPC cost function in order to achieve a desirable sparse actuation. It features an l1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. While standard control techniques lead to continuous movements of all actuators, this approach enables a selected subset of actuators to be used, the others being brought into play in exceptional circumstances. The same approach can also be used to obtain asynchronous actuator interventions, so that control actions are only taken in response to large disturbances. This thesis presents a straightforward and systematic approach to achieving these practical properties, which are ignored by mainstream control theory.
Pages
187 pages
Collection
Springer Theses
Parution
2016-03-31
Marque
Springer
EAN papier
9783319279619
EAN EPUB
9783319279633

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
18
Taille du fichier
4444 Ko
Prix
94,94 €